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ABSTRACT
In this work, we present our approach for all four tracks of the
eighth Emotion Recognition in the Wild Challenge (EmotiW 2020).
The four tasks are group emotion recognition, driver gaze predic-
tion, predicting engagement in the wild, and emotion recognition
using physiological signals. We explore multiple approaches includ-
ing classical machine learning tools such as random forests, state
of the art deep neural networks, and multiple fusion and ensemble-
based approaches. We also show that similar approaches can be
used across tracks as many of the features generalize well to the
different problems (e.g. facial features). We detail evaluation results
that are either comparable to or outperform the baseline results for
both the validation and testing for most of the tracks.
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1 INTRODUCTION
We present our approaches to the four tracks of the eighth Emotion
Recognition in the Wild Challenge (EmotiW 2020): (1) Audio-video
based group emotion recognition (AV); (2) Driver gaze prediction
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(GC); (3) Engagement prediction in the wild (EW); and (4) Physio-
logical signal based emotion recognition (PER). Each of the tracks
are important and timely topics that have significant real-world ap-
plications. Predicting driver gaze is important for the safety of the
driver, passengers, and other people on the road, as well as walking
on sidewalks. If the driver’s attention is diverted from the road for
longer then the recommended time from the National Highway
Traffic Safety Administration, the driver could lose control of the
vehicle. This diverted attention could cause injuries, as well as fatal
accidents [28]. Along with helping with safe driving, gaze can also
be used to help assess engagement in students in classrooms (i.e.
wild setting). This is an important task for teachers and professors
as it can help improve their teaching, as well as improve the stu-
dents’ learning experience. Considering this, Thomas and Jayagopi
[35] used eye gaze along with other behavior cues such as head
pose and facial expressions for this task. They found that the fusion
of gaze along with the others modalities, can perform better than
a baseline evaluator. Another important modality is physiological
data, as it has been used in important applications in the medical
field. Zamzmi et al. [41] used the fusion of physiological signals
along with others features such as crying and body movement, to
assess neonatal pain. Their results suggest that important features
can be extracted from these signals for accurate assessment.

Although these modalities and applications are important, they
are largely in the context of a single person (e.g. pain assessment
in one neonate). Group emotion recognition is also an important
topic, as social interactions have a large influence on the elicitation
of emotions [2, 29]. Van Kleef and Fischer [37] investigated the
role of emotions in groups. More specifically, they look at how
group-level events shape emotion, how emotional expressions are
recognized by the group, and how those expressions influence the
behavior of group members. Considering each of the important,
broad applications that each of the EmotiW tracks facilitates, we
propose new approaches for all four tracks. The contributions of
this work, across all tracks, can be summarized as follows.

(1) We propose an approach to group emotion recognition that
fuses optical flow and mel spectrogram features from video
and audio.We investigate the positive impact of the proposed
fusion approach by also conducting unimodal (e.g. audio
only) experiments on the validation set.

(2) For driver zone classification, we investigate a range of
modalities including, but not limited to, gaze, head pose, and
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facial landmarks. We conducted an ablation study showing
the utility of individual features along with their fusion.

(3) We show that similar approaches can be used for multiple
tracks as many features (e.g. facial features) generalize well
to different problems. Specifically, we use similar features as
used for driver zone classification for engagement prediction
(e.g. gaze and head pose).

(4) A GAN-based discriminator ensemble is proposed for emo-
tion recognition using physiological signals. We also com-
pare the proposed approach with hand-crafted features used
to train a random forest.

2 RELATEDWORK
2.1 Group Emotion Recognition
In recent years, there have been encouraging results for group emo-
tion recognition. Gupta et al. [18] consider both global and local
information from images. The global information is captured from
the entire image (i.e. group emotion) and the local information is
captured from individual faces. The global information is learned
through a convolutional neural network, while the local informa-
tion is learned through an attention mechanism. The two branches
(global and local) are finally fused, through concatenation, for the
final group emotion recognition. Another interesting approach to
group emotion recognition was proposed by Veenendaal et al. [38].
They proposed the use of edge detection to extract features for
group emotion recognition. Using these features to train a support
vector machine, they showed promising results when the group’s
emotion was captured while they watched sports videos.

2.2 Driver Gaze Prediction
In recent years, there has been promising work predicting driver
eye gaze. Wang et al. [39] proposed an appearance-based, head
pose free approach to predicting driver gaze. Using a combination
of a 3D facial model, landmarks, and features extracted from eye
regions they trained a random forest for this task. They showed
promising results for predicting driver gaze in a real-world driving
environment. Another interesting approach is the recent work from
Deng et al. [9]. They proposed a Convolutional-Deconvolutional
Neural Network (CDNN) for predicting drivers’ gaze fixations. They
showed that the proposed CDNN can predict major fixation loca-
tions, as well as detect important objects in the scene that should
not be ignored (e.g. person riding a bicycle in the street).

2.3 Engagement in the Wild
In the baseline paper for the engagement in the wild track, Kaur et
al. [21] detail a new dataset for student engagement and localization.
To perform the engagement detection, they propose a multimodal
approach that makes use of LBP-TOP [42] for spatio-temporal facial
features, as well as gaze and head pose to give cues about attention
and areas of interest. Using these features, they train a deep multi-
instance network for engagement prediction and localization. Using
this approach they detail encouraging baseline results for this track.
Al-Alwani [1] also makes use of facial features, where they are used
to detect the mood and subsequent engagement of students in an
e-learning environment. Using facial features, a neural network
was trained to detect the mood from facial expressions. Subject

self-report on their engagement and mood was collected, showing
a positive correlation between the mood of the students and their
engagement in the material.

2.4 Physiological Signal Based Emotion
Recognition

Recent works have shown promising results on physiological signal-
based emotion recognition, such as the work from Fabiano et al.
[13]. They proposed a new weighted approach for fusing physi-
ological signals that outperformed state of the art for 10 elicited
emotional categories in BP4D+ [43], and arousal, valence, liking,
and dominance in DEAP [24]. Promising work has also been done
in more specialized areas such as pain recognition. Hinduja et al.
[19] looked at the physiological signals that corresponded with the
most expressive parts of the face during a video sequence. This was
done using facial images that were captured at the same time as
the physiological signals. In their investigation, they successfully
recognized the context that was used to elicit a painful response
(i.e. cold compression). Along with this, their results suggest that
there is a high correlation between the physiological signals and
highly expressive faces, however, the correlation decreases when
low expressive faces are occurring.

3 AUDIO-VIDEO GROUP EMOTION
RECOGNITION

3.1 Dataset
The dataset [30] for the audio-video group emotion recognition
track contains 2661 videos for the training set, 756 videos for the
validation set and 756 videos for the test set. The dataset consists of
many types of group activity that include videos of talk show hosts
and their guest(s), crowded groups of people talking, and groups
of people being interviewed. The data is divided into 3 classes –
Positive, Neutral and Negative corresponding to the 3 emotion
categories. The dataset is challenging due to obstructions like head
and body pose variations of the people, occlusions in faces, and
various indoor and outdoor environment settings.

3.2 Group Emotion Recognition Features
Features FromVideo: Given a group video, we extract 256 frames
to represent the image-space. We then track 16 features, in each
frame, using the KLT features tracker [27, 32]. This results in a 32
dimension feature vector 𝐹𝑔𝑜𝑜𝑑 = [𝑥1, 𝑦1, . . . , 𝑥16, 𝑦16], where 𝑥𝑖
and 𝑦𝑖 are the (x, y) coordinates of the 𝑖𝑡ℎ tracked feature. Given
𝐹𝑔𝑜𝑜𝑑 , we then calculate the optical flow between consecutive
frames by calculating the Δ between each corresponding set of
(x, y) coordinates of the features. To account for the first frame,
we calculate the Δ with itself (i.e. 0). Given the Δ for each feature
between frames, we then calculate the mean across the 16 Δ values.
This is done per axis (x. y), as well as overall across both x and y.
We then construct a 4-dimension feature vector, per frame, 𝑀 =

[𝑥𝑚𝑒𝑎𝑛, 𝑦𝑚𝑒𝑎𝑛, 𝑜𝑚𝑒𝑎𝑛, 𝑜𝑚𝑒𝑎𝑛], where𝑥𝑚𝑒𝑎𝑛 and𝑦𝑚𝑒𝑎𝑛 are the per-
axis mean, and 𝑜𝑚𝑒𝑎𝑛 is the overall mean across both x and y. We
then concatenate each per-frame𝑀 in a 1024-dimension (256 × 4)
feature vector 𝑀𝑓 𝑖𝑛𝑎𝑙 = [𝑥𝑚𝑒𝑎𝑛1 , 𝑦𝑚𝑒𝑎𝑛1 , 𝑜𝑚𝑒𝑎𝑛1 , 𝑜𝑚𝑒𝑎𝑛1 , . . . ,

𝑥𝑚𝑒𝑎𝑛256 , 𝑦𝑚𝑒𝑎𝑛256 , 𝑜𝑚𝑒𝑎𝑛256 , 𝑜𝑚𝑒𝑎𝑛256 ]. We then construct similar
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Figure 1: Group emotion recognition architecture. Given an input video, optical flow and mel spectrogram features are con-
verted into image representations. Each modality (audio/video) is then used to train a separate Xception network, where deep
features are extracted and fused for final recognition.

Table 1: Group emotion recognition results.

Model Validation
Accuracy

Test
Accuracy

Baseline 50.05% 47.88%
Fusion 37.00% 35.00%
Xception Visual 24.00% -
Xception Audio 35.00% -

vectors for themedian and standard deviation across the 16Δ values.
This results in three feature vectors (mean, median, and standard
deviation) of size 1024, for a total of 3072 features to represent each
video. It is important to note that we repeat the 𝑜𝑚𝑒𝑎𝑛 value in our
feature vectors, as we will transform our vectors into the image
space. This allows us to keep our size consistent which results in a
final image of size 32 × 32 × 3. Given 3 feature vectors of size 1024,
we then map the 𝑖𝑡ℎ value in each vector to the 𝑖𝑡ℎ pixel in our new
image. We construct an RGB image, therefore we map the mean
value to red, median value to green, and standard deviation value to
blue. The final image is then resized to 256 × 256 to be consistent
with the image of mel spectrogram audio features, as we detail next.
This approaches allows for a new temporal representation of the
flow in videos of group emotion (Figure 1).

Features FromAudio: Given a video, we first extract anMP3 of
the audio which we then convert to waveform. Given the waveform
audio, we then compute themel spectrogram [31], using 128 bins for
384 timestamps. This results in a 49,152-dimension feature vector
𝑠𝑝𝑒𝑐 = [𝑚𝑠1, . . . , 𝑚𝑠49152], where𝑚𝑠𝑖 is the 𝑖𝑡ℎ mel spectrogram
feature computed. Similar to the video features, we map the 𝑖𝑡ℎ

mel spectrogram feature to the 𝑖𝑡ℎ pixel in a new image of size
128 × 384, which we then resize to 256 × 256 (Figure 1).

3.3 Experimental Design and Results
The images of visual (optical flow) and audio (mel spectrogam)
features are used to train a separate Xception network [7] which is
a convolutional neural network with 71 layers. From each of the
networks (audio and video), we extract 2048 deep features from
the fully connected layers and then fuse them by concatenating
themwhich results in a new 4096-dimension vector of deep features

𝐷𝐹 = [𝑑 𝑓 𝑎1, . . . , 𝑑 𝑓 𝑎2048, 𝑑 𝑓 𝑣1, . . . , 𝑑 𝑓 𝑣2048], where 𝑑 𝑓 𝑎𝑖 and
𝑑 𝑓 𝑣𝑖 are the 𝑖𝑡ℎ deep audio and video features, respectively. We
then add one dense and one fully connected layer to recognize the
emotion from 𝐷𝐹 (Figure 1).

As can be seen in Table 1, the proposed fusion approach boosts
the overall accuracy, on the validation set, for group emotion recog-
nition by 2% and 13% over using audio and video, respectively, in
a unimodal fashion. This can be explained, in part, as multimodal
features have been shown to boost accuracy over unimodal fea-
tures [40]. For our evaluation on the test set, we submitted our
fusion approach resulting in an accuracy of 35%. While the fusion
improved the overall accuracy, compared to a unimodal approach,
it is important to note that the overall accuracy is relatively low as
it is 1̃2%–13% lower than the baseline on the validation and test sets.
This can be explained in part by the difficulty in tracking features
for some of the videos. This had two direct impacts (1) reduced
training data; and (2) invalid results on validation/test data. For the
training data, we removed 28% of the training videos due to lack
of tracked features. For the validation/test data, when the features
were not tracked, to ensure a classification occurred, we set the
default value of the features to 0. While this can partially explain
the relatively low accuracy, this can also explain the audio features
having an 11% higher accuracy compared to the visual features due
to a smaller amount of training data for video.

4 DRIVER GAZE PREDICTION
4.1 Dataset
The driver gaze zone in the Wild(DGW) dataset [16] has 338 differ-
ent subjects. The training set consists of 29,928 frames; validation
set consists of 10,295 frames; test set consists of 11,041 frames. The
entire dataset is classified into nine different zones within the car,
represented by back mirror, side mirror, radio, speedometer and
windshield. The data has been recorded under various illumination
conditions and during different times of the day. Figure 2 shows
the distribution of the training and validation sets.

4.2 Driver Gaze Prediction
For predicting driver gaze, we propose an architecture that consists
of 𝑛 feature extraction functions and an ensemble of𝑚 modeling
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Figure 2: Per-zone data distribution.

functions. Each extraction function can output more than one fea-
ture for a given input frame. Thus, the extraction assembly results in
𝑝 feature vectors such that 𝑝 ≥ 𝑛. In our experimental design 𝑛 = 2
and𝑚 = 6, however, the proposed architecture can be extended to
any number of feature extraction and modeling functions.

Feature Extraction. The feature extraction phase in the pro-
posed architecture extracts patterns to be analyzed by a mapping
function to the target label. In our experimental design, we have
two categories of features - non-pixel, and pixel space. These fea-
tures are extracted by the publicly available Dlib [22] and Openface
[3] libraries. For pixel space features, we extracted and cropped
the face and eye regions; we extract the following non-pixel space
feature vectors, from each frame.

• HOG Features[8]:We extracted HOG features over the eye
regions and constructed the 500-dimension feature vector
𝐸𝐻𝑂𝐺 = [𝐻1, 𝐻2, . . . , 𝐻500], where𝐻𝑖 is the 𝑖𝑡ℎ HOG feature.

• Eye Gaze: We extracted 2 3D eye gaze vectors (left and
right eyes) along with the average gaze angle over both x
and y. We then constructed the 8-dimension feature vec-
tor 𝐸𝐺 = [𝑙𝑥 , 𝑙𝑦, 𝑙𝑧 , 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝑎𝑣𝑔𝑥 , 𝑎𝑣𝑔𝑦], where 𝑙 {𝑥,𝑦,𝑧 } and
𝑟 {𝑥,𝑦,𝑧 } are the left and right gaze vectors, and 𝑎𝑣𝑔𝑥 and 𝑎𝑣𝑔𝑦
are the average gaze angles over x and y, respectively.

• Head Pose: We extracted the translation and orientation
of the head, both as 3D vectors. We then constructed the 6-
dimension feature vector 𝐻𝑃 = [𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 , 𝑜𝑥 , 𝑜𝑦, 𝑜𝑧], where
𝑡 {𝑥,𝑦,𝑧 } and 𝑜 {𝑥,𝑦,𝑧 } are the (x, y, z) coordinates of the trans-
lation and orientation vectors, respectively.

• Facial Landmarks:We extracted 68 2D facial landmarks re-
sulting in the 136-dimension feature vector 𝐹𝐿 = [𝑥1, 𝑦1, 𝑥2,
𝑦2, . . . , 𝑥68, 𝑦68], where 𝑥𝑖 and 𝑦𝑖 are the 𝑖𝑡ℎ extracted x and
y coordinate, respectively.

Ensemble of Modeling Functions. An ensemble of models is
trained with the features as input and target labels as output. In our
experiments, non-pixel-space features (e.g. HOG, gaze vector) are
eachmodeled by random forests [5] andmapped to the classification
label. The pixel-space features (cropped face and eye regions) are
each processed by InceptionV3 networks [34]. Each model in the
ensemble receives a weight depending on their accuracy during the
training phase, making the accuracy values a parameter. The final
output maximizes the weighted sum of probability predictions.

In order to minimize the influence of noise on the model, we
propose to use a weight vector, 𝑤 = [𝑤1 . . .𝑤𝑚]⊤, where 𝑤 is a
collective measure of the accuracy of each model in the ensem-
ble. Estimates of models that are more accurate, notwithstanding

Figure 3: Overview of driver gaze prediction architecture -
ensemble of random forests and InceptionV3 networks via
voted prediction.
statistical imbalance in the features, are given more weight than
others, allowing the ensemble to pick the best model decision. Thus,
given a set of feature vectors, Φ, the ensemble of models may be
viewed as a singular modeling function: 𝑦 = 𝑓 (Φ;𝑤). The model,
in addition to being a function of the input variable Φ, captures
a special aspect: the nature of the domain 𝑤 . The output vector
𝑦 is a set of confidence levels expressed as probability values by
each model in the ensemble. In order to maximize the classification
result by confidence level, we add confidence levels of each target
variable corresponding to each model’s classification and select the
variable with the most confidence:

𝑦 = arg max
𝑚∑
𝑖=1

𝑦𝑐 . (1)

Here, 𝑐 ∈ [1, 2, . . . , 9], which are the driver zones (e.g. windshield).
See Figure 3 for an overview of the proposed architecture.

4.3 Experimental Design and Results
Experimental Setup. For our experimental design, we used a com-
bination of random forests and InceptionV3 architecture to combine
the effect of statistical and deep learning models. We empirically
found the optimal number of trees to be [250, 300] based on the
specific feature vector (e.g. gaze vectors). For the InceptionV3 ar-
chitecture, we use Adam optimizer [23] with a batch size of 32,
learning rate of 0.001, 30% dropout [33], and the models are trained
for 200 epochs.

Validation results.We investigated multiple combinations of
features to train our models. Our experiments indicate that mod-
els trained on features obtained from several extraction functions
are optimized better than those that rely on homogeneous and re-
stricted sets of features. For example, Figure 4 shows an instance
where the extractor inaccurately estimates eye gaze with uneven
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Table 2: Driver zone classification results on the validation and test sets.

Feature type Modality/Model Feature size Val accuracy Test Accuracy Method

Openface

Gaze 6 55.64 27.78 Random forest

Headpose 8 90.04 - Random forest

Landmarks 136 91.34 - Random forest

HOG 500 75.30 26.37 Random forest

Gaze + Headpose + Landmark (6+8+136) 92.36 - Random forest

Gaze_RF + Headpose_RF + Landmark_RF (6, 8, 136) 94.43 - Voted probability predictions

Headpose_RF + Landmark_RF (8, 136) 95.56 - Voted probability predictions

Gaze_RF + HOG_RF (6, 500) 85.38 - voted probability predictions

Headpose_RF + Landmark_RF + HOG_RF (8, 136, 500) 96.58 - Voted probability predictions

Face/Eye bounding box
Eyes (224, 224) 57.9 - InceptionV3

Face (224, 224) 66.45 57.32 InceptionV3

Eyes + Face ([224 × 224], [224 × 224]) 67.46 - Voted probability prediction

Openface + Bounding box

Face + Gaze_RF + Landmark_RF + Headpose_RF ([224×224], 6, 8, 136) 96.50 - Voted probability predictions

Eyes + Landmark_RF + Headpose_RF ([224 × 224], 136, 8) 96.12 - Voted probability predictions

Eyes + Face + Gaze_RF ([224 × 224], [224 × 224], 8) 77.03 - Voted probability predictions

Face + Landmarks_RF + Headpose_RF + HOG_RF ([224 × 224], 136, 8, 500) 97.60 33.98 Voted probability predictions

Face + Eyes + Gaze_RF + Landmark_RF + Headpose_RF ([224 × 224], [224 × 224], 6, 136, 8) 97.8 - Voted probability predictions

Baseline Face - 60 - InceptionV1

(a) Gaze direction misalignment (b) HOG features

Figure 4: Comparison of incorrect gaze vectors, due to light-
ing, along with lighting-invariant HOG features.

light illumination on the subject’s face. To overcome this and similar
challenges, we investigate a multimodal approach to the problem.
In this example, as there are lighting issues, we investigate the
use of illumination-invariant HOG features. Our experiments sug-
gest this approach results in a positive impact on accuracy, as a
random forest trained on the eye gaze vectors alone achieved an
accuracy of 55.65%, while a random forest trained on HOG achieved
an accuracy of 75.3% on the validation set. Certain features are sig-
nificantly more accurate than others in cases where the extractor
has learnt the sub-problem well. Conversely, features of poorly-
learned sub-problems result in inferior inferences. Therefore, with
a combination of several modalities, our model can rely on fea-
tures that are generated with the most confidence and still output
accurate results even if other features do not contribute as much
to learning a given sub-problem. Considering this, a wide range
of features obtained from multiple models (i.e. multimodal), can
result in a rich set of features for training [40]. For example, when
gaze and HOG features were combined in a multimodal fashion,
the accuracy increased to 85.38%. See Table 2, for details on all
conducted unimodal and multimodal experiments.

Test Results.Weperformed 4 evaluations; 2 unimodal non-pixel
space, 1 unimodal pixel space, and 1 multimodal pixel and non-pixel
space. More specifically, (1) gaze features; (2) HOG features; (3)
cropped face regions; and (4) cropped face regions, facial landmarks,

head pose, and HOG features. In these evaluations, we see the
trend of the voted predictions performing better than the individual
models, however, it is important to note our predictions involving
random forests performed poorly on the test set (Table 2). This
can be explained, at least partially, from high variation in the data
distribution of the test set compared to the train and validation sets,
as well as miscalculated features (i.e. error propagation from feature
extractors to modeling functions). Considering this, the cropped
face regions trained under the InceptionV3 architecture achieved
the highest accuracy of 57.32%.

5 ENGAGEMENT PREDICTION THEWILD
5.1 Dataset
The engagement prediction in the wild dataset consists of 148 train-
ing and 48 validation videos of students watching educational
videos. The videos were recorded at different locations such as
computer labs, parks, and dormitories providing varied locations
of "in the wild" settings. Each video is approximately 5 minutes
long and is provided with an engagement level of [0, 1], where 0
corresponds to disengaged and 1 corresponds to highly engaged.
The levels were annotated by five annotators on the basis of video
content only (without audio). Along with the videos, the dataset
also contains the OpenFace[4] and LBP-TOP[42] features which
include the subject’s high- and low-level features. As can be seen in
Figure 6, there is an imbalance of sample videos across each level.
Considering this, we construct a subject independent, modified
dataset which we refer to as merged + balanced, to account for
the imbalance. In this modified dataset, we partially merged the
training and validation videos to to be more balanced across each
levels. Due to more videos for level 2 compared to levels, 0, 1, and
3 we merge and balance them by the following criteria: (1) merge
all training and validation samples for levels 0, 1, and 3 resulting in
9, 45, and 53 sample videos for each level, respectively; (2) only use
training samples for level 2 and reduce overall number of samples
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from 79 to 55 (reduction of approximately 30%). It is important to
note that this merged + balanced dataset was only used on the test
set, validation results are from using the original training set.

We have also empirically found that many of the consecutive
frames in the videos exhibit little change. Considering this, we
down-sampled the videos to 10 frames per second. There are seg-
ments in each video where the students adjust the camera at the
beginning and end of the videos which we filter by only considering
frames within the timestamp range of [00 : 30 − 4 : 30].

5.2 Engagement Prediction Features
We are motivated by the previous work that has shown the positive
impact of facial attributes on predicting user engagement [1, 21].
Considering this, we propose to use AUs, gaze, head pose, and a
non-rigid point distribution model (PDM) [4]. Along with these
features, we also propose to use body movement as it can give us
insight into the relation of body movement to engagement. To do
this, we extract the body key points using the publicly available
OpenPose[6], which extracts key body landmarks corresponding to
face, hands and neck. Along with the default model for OpenPose,
we also make use of the Common Object in Context (COCO) model
[25] for extracting these features as we observed that using this

gave us a better estimate in cases of occlusion. See Figure 5 for an
overview of our proposed approach.

Facial ActionUnits [11] refer to facial muscle movements such
as lowering of brow and pulling lip corner. We are motivated to
use AUs by recent works that have shown them to be useful for
inferring facial expressions [1, 19]. To investigate their positive
impact for predicting engagement, we computed the mean and
standard deviation for all 17 AUs, that are extracted with OpenFace,
over a video sequence. We then construct the 34-dimension feature
vector 𝐹𝐴𝑈 = [𝑚𝑒𝑎𝑛1, 𝑚𝑒𝑎𝑛2, . . . , 𝑚𝑒𝑎𝑛17, 𝑠𝑡𝑑1, 𝑠𝑡𝑑2, . . . , 𝑠𝑡𝑑17],
where𝑚𝑒𝑎𝑛𝑖 and 𝑠𝑡𝑑𝑖 are the mean and standard deviation of the
𝑖𝑡ℎ action unit across all video frames.

FacialAttributes have been successfully used in previousworks
for predicting engagement [1, 21]. Considering this, we propose to
use the following per-frame features in our approach.

• Eye Gaze: 3D eye gaze vector, from both eyes, resulting in
a 6-dimension feature vector 𝑓𝑔 = [𝑙𝑥 , 𝑙𝑦, 𝑙𝑧 , 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧],
where 𝑙 {𝑥, 𝑦, 𝑧 } and 𝑟 {𝑥, 𝑦, 𝑧 } are the (x, y, z) coordinates of
the left and right eye gaze direction vector, respectively.

• Head Pose: We constructed a 6-dimension feature vector
𝑓ℎ = [𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 , 𝑜𝑥 , 𝑜𝑦, 𝑜𝑧], where 𝑡 {𝑥, 𝑦, 𝑧 } and 𝑜 {𝑥, 𝑦, 𝑧 }
are the (x, y, z) coordinates of the head pose translation and
orientation vectors, respectively.

• Point DistributionModel:We used 34 non-rigid point dis-
tribution model (PDM) parameters to make a 34-dimension
feature vector 𝑓𝑝𝑑𝑚 = [𝑝1, 𝑝2, . . . , 𝑝34], where 𝑝𝑖 is the 𝑖𝑡ℎ
non-rigid PDM parameter.

Given feature vectors 𝑓𝑔 , 𝑓ℎ, and 𝑓𝑝𝑑𝑚 , we then construct the 46-
dimension feature vector 𝐹 = [𝑓𝑔 , 𝑓ℎ, 𝑓𝑝𝑑𝑚] resulting in a new
facial attributes feature vector that consists of gaze, head pose, and
non-rigid PDM parameters. We then calculate the mean and stan-
dard deviation of each element of 𝐹 across all frames in each video.
We then constructed our final 92-dimension facial attribute feature
vector 𝐹𝐴 = [𝑚𝑒𝑎𝑛1, 𝑚𝑒𝑎𝑛2, . . . , 𝑚𝑒𝑎𝑛46, 𝑠𝑡𝑑1, 𝑠𝑡𝑑2, . . . , 𝑠𝑡𝑑46],
where𝑚𝑒𝑎𝑛𝑖 and 𝑠𝑡𝑑𝑖 are the mean and standard deviation, across
all frames of a video, for each element in 𝐹 .

Body Landmarks.We detected 12 key-points around the face,
neck and hand to construct a 12-dimension feature vector 𝐵 =

[𝑛𝑜𝑠𝑒, 𝑛𝑒𝑐𝑘, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑙𝑒 𝑓 𝑡 , 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑟𝑖𝑔ℎ𝑡 , 𝑒𝑙𝑏𝑜𝑤𝑙𝑒 𝑓 𝑡 , 𝑒𝑙𝑏𝑜𝑤𝑟𝑖𝑔ℎ𝑡 ,

𝑤𝑟𝑖𝑠𝑡𝑙𝑒 𝑓 𝑡 , 𝑤𝑟𝑖𝑠𝑡𝑟𝑖𝑔ℎ𝑡 , 𝑒𝑦𝑒𝑙𝑒 𝑓 𝑡 , 𝑒𝑦𝑒𝑟𝑖𝑔ℎ𝑡 , 𝑒𝑎𝑟𝑙𝑒 𝑓 𝑡 , 𝑒𝑎𝑟𝑟𝑖𝑔ℎ𝑡 ], where
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Table 3: Engagement prediction results - original train data.

Modality MSEval PCCval MSElevel-wise

Level 0 Level 1 Level 2 Level 1

AUs (FAU) 0.054 0.673 0.090 0.100 0.017 0.060

Facial Attributes (FA) 0.072 0.497 0.149 0.093 0.013 0.110

Body Landmarks (BL) 0.068 0.554 0.201 0.094 0.010 0.088

Average Ensemble 0.062 0.622 0.141 0.094 0.012 0.081

Weighted Avg Ensemble 0.061 0.631 0.136 0.095 0.012 0.079

Baseline 0.10 - - - - -

each element of 𝐵 is a key-point from the specific part of the
body (e.g. 𝑒𝑙𝑏𝑜𝑤𝑟𝑖𝑔ℎ𝑡 is a key-point extracted from the right el-
bow). We then calculated the mean and standard deviation for
each key-point, in 𝐵 across all frames of a video. This results
in our final 24-dimension body landmark feature vector 𝐵𝐿 =

[𝑚𝑒𝑎𝑛1, 𝑚𝑒𝑎𝑛2, . . . , 𝑚𝑒𝑎𝑛12, 𝑠𝑡𝑑1, 𝑠𝑡𝑑2, . . . , 𝑠𝑡𝑑12], where𝑚𝑒𝑎𝑛𝑖
and 𝑠𝑡𝑑𝑖 are the mean and standard deviation, across all frames of
a video, for the 𝑖𝑡ℎ element in 𝐵.

5.3 Experimental Design and Results
To predict engagement in the wild, we trained 3 random forests [5]
with 200 trees each. Each random forest was trained with one of
the feature types described in Section 5.2: (1) Action units (FAU); (2)
Facial Attributes (FA); and (3) Body Landmarks (BL). We evaluated
the accuracy of prediction using each individual model, as well as
an average ensemble, and a weighted average ensemble. For our
evaluation, we calculated the Mean Squared Error (MSE) along
with Pearson’s Correlation Coefficient (PCC) for understanding
how related our predictions are to the true values. For a better
understanding of level-wise performance, engagement level-wise
MSEs are also calculated. For the average ensemble, we take the
average prediction across the FAU, FA, and BL models as the final
prediction. For our weighted ensemble, we find the weights based
on the performance of each model on the validation set as

𝑤𝑡𝑜𝑡𝑎𝑙 =

𝑁∑
𝑖=1

1
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙𝑖

, (2)

where𝑤𝑡𝑜𝑡𝑎𝑙 is the total weight across all models, N = total number
of models, and𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙𝑖 is the MSE of the evaluated model. We
then calculate the weight for each individual model as

𝑤𝑚𝑜𝑑𝑒𝑙𝑖 =

1
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙𝑖

𝑤𝑡𝑜𝑡𝑎𝑙

. (3)

Given𝑤𝑚𝑜𝑑𝑒𝑙𝑖 , we then calculate the final prediction as

𝑝𝑟𝑒𝑑𝑓 𝑖𝑛𝑎𝑙 =

𝑁∑
𝑖=1

𝑝𝑟𝑒𝑑𝑚𝑜𝑑𝑒𝑙𝑖 ×𝑤𝑚𝑜𝑑𝑒𝑙𝑖 . (4)

In our experimental design 𝑁 = 3, and𝑚𝑜𝑑𝑒𝑙𝑖 ∈ [𝐹𝐴𝑈 , 𝐹𝐴, 𝐵𝐿].
As can be seen in Table 3, the model trained on AUs (FAU) had

the lowest MSE with 0.054, on the validation set. However, as can
be seen in Table 4, this is not the same for the testing set when we
used the original training set as training data. Both the average and
weighted ensemble achieved a lower MSE. This can be explained, at
least partially, by the ensemble being able to better handle unseen
data in the testing set and the distribution of AUs could have been

Table 4: Engagement prediction results - merged train data.

Training
Data Modality MSEtest MSElevel-wise

Level 0 Level 1 Level 2 Level 3

Original
Average Ensemble 0.0666 0.281 0.064 0.013 0.073

Weighted Avg Ensemble 0.0662 0.280 0.063 0.013 0.069

Action Units 0.0675 0.268 0.060 0.023 0.035

Merged+ Average Ensemble 0.0691 0.274 0.063 0.020 0.079

Balanced Weighted Avg Ensemble 0.0659 0.266 0.061 0.018 0.067

Baseline 0.15 - - - -

different in the validation and testing sets causing a decrease in
performance [20]. Considering this, we also submitted evaluations
on the test set using the average and weighted ensemble trained
on the merged+balanced training data, as detailed in Section 5.1.
Using the merged+balanced training data, we achieved our lowest
MSE of 0.0659 (3𝑟𝑑 place in challenge) with our weighted average
ensemble approach (Table 4). This overall lower MSE suggests that
our weighted average ensemble approach, along with a more bal-
anced training set can help increase the performance of predicting
engagement levels in wild settings.

6 PHYSIOLOGICAL SIGNAL BASED EMOTION
RECOGNITION

6.1 Dataset
The dataset consists of physiological data collected while subjects
watch movie clips from the Acted Facial Expressions in The Wild
(AFEW) [10]. The videos in the AFEW include the 7 emotions
Happy, Sad, Disgust, Surprise, Fear, Angry and Neutral. Each of
the videos are approximately 300ms - 5400ms long. The physio-
logical data is collected at a frequency of 4Hz, resulting in each
signal having a range of data points from [12, 216] to represent
the video. It is important to note that the subjects watch each of
the videos in a consecutive fashion. This can result in significant
variance over time as can be seen in Figure 7a, however when the
shorter, emotion-specific segments of the sequences are extracted,
the variance decreases and multiple emotions look similar (Figure
7b - 7d).

6.2 GAN-based Ensemble
Generative Adversarial Networks [17] have a Generator and Dis-
criminator network and the two models attempt to outperform the
other. In many works, GANs are used to generate new synthetic
data with the help of the generator [14, 15, 36]. In our approach,
we propose to use the discriminator part of the GAN to recognize
emotions. We trained 7 GAN architectures, where each one was
trained on a specific emotion (e.g. Happy). To facilitate this we
divided the training into two stages: (1) Independent GAN training,
and (2) Discriminator ensemble.

GAN Architecture. Two Fully Connected Neural Networks
(FNN), where one is the generator and one is the discriminator are
used. The generator has 3 dense layers with the first layer having
5000 neurons, second layer has 2500 neurons, and the output layer
has 1500 output neurons. The first 2 layers use reLu activation and
the output layer uses linear activation. The discriminator has 7
layers - 5 dense layers and 2 dropout layers. The first layer is the
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(a) Full Signal (b) Happy Signal

(c) Surprise Signal (d) Disgust Signal

Figure 7: Psychological signals of one subject in training set.

input layer with 1500 neurons, the second layer has 1000 neurons,
third layer is a dropout layer with a 0.2 dropout, fourth layer has 750
neurons, fifth layer is another dropout layer with 0.2 dropout, the
sixth layer is a dense layer with 150 neurons and the output layer
has just a single neuron. The output layer has sigmoid activation
while the other dense layers have reLu activation. We used binary
cross entropy as the loss function and adam as the optimizer. We
trained each GAN network for 500 epochs.

Independent GAN training. GANs train the generator to con-
fuse the discriminator, and the discriminator tries to identify fake
signals from real signals. Motivated by this, we modify the train-
ing of the GAN to train the discriminator to identify the emotion
signal from noise and other emotion signals (i.e. real emotion vs.
fake/other emotion). In original GAN training, the discriminator
is trained with the original signal labeled as real and the gener-
ated signal labeled as fake. In our training method, we trained the
discriminators by labeling the target emotion of the discriminator
as real and other emotions along with signals generated by the
generators as fake. To facilitate this training, it is important to note
that the physiological signals are of different lengths. To create a
uniform signal across participants and emotions, we first performed
min-max normalization to the entire signal and then re-sampled
the signal to 1500 points to ensure consistent signal lengths across
all participants and emotions.

Ensemble of GAN Discriminators. After we have trained the
GANs, we take the 7 discriminators and concatenate the output
layers of the discriminators resulting in the 7-dimension probability
vector𝐺𝑝𝑟𝑜𝑏 = [𝐷1, 𝐷2, . . . , 𝐷7], where𝐷𝑖 is the probability output
from the 𝑖𝑡ℎ GAN discriminator. Given 𝐺𝑝𝑟𝑜𝑏 , we then train a
random forest to recognize emotions.

6.3 Experimental Design and Results
Motivated by the work from Liu et al. [26], we also created an 8-
dimension vector of handcrafted features 𝐺ℎ𝑐 = [𝑚𝑖𝑛,𝑚𝑎𝑥,𝑚𝑒𝑎𝑛,

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,𝑚𝑒𝑎𝑛 𝑎𝑏𝑠 𝑑𝑖 𝑓 𝑓 , 𝑠𝑒𝑐𝑜𝑛𝑑𝑚𝑒𝑎𝑛 𝑎𝑏𝑠 𝑑𝑖 𝑓 𝑓 , 𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟 ], which
is used to train a random forest to recognize emotion. For our exper-
imental design, we have empirically found that the optimal number
of trees for our random forests is 275.

GAN-based Ensemble Results. In the validation setting, we
recognized the emotion of 1 subject watching a video. Under this
setting, we achieved an overall accuracy of 14.58%. The test setting

Table 5: Emotion-level results (physiological) on test set.

Emotion GAN Random Forest
Happy 22.22% 22.22%
Surprise 17.86% 3.57%
Disgust 2.50% 12.50%
Angry 10.31% 11.34%
Fear 10.00% 14.29%
Sad 12.50% 12.50%

Neutral 17.62% 29.02%

was modified compared to the validation setting. In this setting, we
were required to give one label to the video which was watched
by multiple participants. To facilitate this, we used a max voting
approach and we broke ties by summing the discriminator proba-
bilities of all participants, who watched the video, and the emotion
with the highest summed probability was predicted as the final
emotion for the video. Using this experimental design, We achieved
a overall accuracy of 15.18% on the challenge testing set.

Hand-crafted Features Results. For training a random forest
with hand-crafted features, We conducted a similar experimental
design as that of our GAN-based ensemble. While we still imple-
mented max-voting, in this setting we broke ties by randomly se-
lecting the emotion with the max votes. Using this experimental
design, we achieved an overall accuracy of 15.44% and 19.17% on
the validation and test sets respectively.

It is interesting to note, that the hand-crafted features outper-
formed the GAN-based ensemble, for overall accuracy, on both the
validation and testing sets. This can be explained, in part, by the
small variance in signal across emotions. It has been shown that
physiological signals, that exhibit high variance, generally have
higher performance for emotion recognition [13], while random
forests can perform well when the relative number of dimensions
is low for the data [12]. As can be seen in Table 5, while the hand-
crafted features outperformed our GAN-based ensemble for overall
accuracy, this is not true for all emotions, in the test set. For example,
the Surprise emotion achieved an average accuracy of 17.86% and
3.57% on our proposed GAN-based ensemble and the hand-crafted
features respectively. This could potentially be explained by the
changes in the signals that were not captured by the hand-crafted
features, however, our proposed ensemble was able to more accu-
rately determine what was real and what was fake (i.e. not Surprise).
It is important to note that we are not showing the baseline results
for this track due to the baseline paper [26] using different data,
and we are the only group to submit to this track.

7 CONCLUSION
We detailed our proposed approaches to all 4 tracks of the EmotiW
2020 challenge. We showed how optical flow and mel sprectrogram
features can be fused for group emotion recognition. Along with
this, we also showed that facial features such as gaze and head pose,
can be used for multiple tracks as they generalize well to different
problems such as driver gaze estimation and engagement in the
wild. Using a challenging physiological signal dataset, we proposed
the use of a GAN-based ensemble for recognizing emotion. Through
most of the tracks, we achieve results that are comparable to, or
outperform the baseline on the validation and test sets.
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