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Abstract—This paper studies the problem of Reflective Think-
ing in children during mathematics related problem solving
activities. We present our approach in solving task 2 of the
AffectMove challenge, which is Reflective Thinking Detection
(RTD) while solving a mathematical activity. We utilize temporal
data consisting of 3D joint positions, to construct a series of
classifiers that can predict whether the subject appeared to
possess reflective thinking ability during the given instance. We
tackle the challenge of highly imbalanced data by incorporating
and analyzing several meaningful data augmentation techniques
and handcrafted features. We then feed different features through
a number of machine learning classifiers and select the best
performing model. We evaluate our predictions on multiple
metrics including accuracy, F1 score, and MCC to work towards
a generalized solution for the real-world dataset.

Index Terms—Handcrafted, Reflective Thinking, UMAP, ML

I. INTRODUCTION

Reflective Thinking is the ability to find insight and infor-
mation to develop a deeper understanding of problems. In the
context of learning, reflective thinking is vital to both teachers
and students, and despite its potential in improving learn-
ing, there is a scarcity in implementing tools that determine
whether a student engages in reflective thinking [1]. According
to literature, there is no straightforward definition for reflective
thinking in the context of problem solving as most of the work
over the years has focused on reflection as an experiential
learning [2]. Therefore, the most apt definition can be obtained
by Dewey et. al. [3], which takes into consideration the
takeaways from past experiences and using this information to
find the solution. Having a precise definition is important in
real-world problem solving techniques where data annotation
is more accurate resulting in less errors.

It has been shown that due to short-term memory and the
transient consciousness of humans, it is arduous to focus on a
single task for a longer period of time [4]. This is especially
highlighted in a classroom environment where children are ex-
pected to have attention for the duration of an entire class. This

becomes non-conducive to learning and therefore it is not only
important to address non-reflective behaviour but also have the
means to identify them. Manually assessing reflective thinking
in any environment is time consuming and is a demanding task
for the educators. With the development of several advanced
machine learning algorithms, the challenging problem of being
able to identify reflective and non-reflective behaviour can be
deciphered more effectively by taking into account various
modalities that are relevant to the activity being performed.
For example, Liu et. al. [5] used text data to assess the
reflective writing of pharmacy students. Additionally, students
involved in learning can be functionally evaluated on their
reflective thinking using facial expressions and audio signals
[2]. Considering this, we use the 3D joint positions of the
body and handcrafted features which are extracted out of the
raw features for reflective thinking analysis.

Our work is focused on solving task 2 of the AffectMove
challenge [6] where given a set of temporal, 3D joint positions
for 17 joints, we aim to estimate the reflective behaviour for
each temporal instance. Each instance belongs to solving one
of the three tasks, from the WeDraw-1 dataset [2], which
are different types of mathematical problems ranging from
forming angles, making shapes, to finding symmetry. We
design a task specific approach which takes into account the
diverse nature of each of the tasks using several features. We
employ data preprocessing techniques such as resampling and
standardization, and examine various augmentation methods
like SMOTE [7] and rotations.

Unlike other works which use LSTM [8] for temporal
data classification [9]–[11], we show that recurrent networks
tend to overfit and perform poorly when the data is highly
imbalanced, in the context of the weDraw-1 dataset. We also
show that substantial data augmentation on LSTM networks
show little to no improvement on the performance of the
network. Consequently, we move to a more statistical approach
in machine learning and employ various classifiers in our
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(a) Overall Pipeline (b) Task-wise Segregation

Fig. 1: (a) Overall Pipeline architecture. The raw features Rall is first fed into the Random Forest classifier RFtask for task
prediction. (b) The predictions of this classifier is used to segregate the Raw features Rall into its respective tasks [R0,R1,R2]
and Handcrafted features Fall into [F0,F1,F2]. (a) The new task-wise feature set is then fed into the mixture of classifiers for
RTD classification, namely, Gradient Boosting (GB0 and GB2) for tasks 0 and 2 respectively and Random Forest (RF1) for
task 1. Finally, each output vector yi for task i is stacked to form a single output vector.

approach. We hypothesize that a single classifier will have
a sub-par performance and accordingly select a mixture of
classifiers such as Random Forests [12] and Gradient Boosting
[13] trained on the aforementioned feature sets to obtain a
reasonable performance. The contributions of our work are
three-fold and can be summarized as follows.

1) A task-specific pipeline architecture (Fig. 1) is designed
to classify reflective and non-reflective thinking. The
pipeline first predicts the task and then a task-specific
classifier is used for Reflective Thinking Detection
(RTD). Our architecture consists of a mixture of classi-
fiers such as Random Forest [12] and Gradient Boosting
[13] for task prediction and RTD.

2) A set of handcrafted features are proposed, from the
given raw features, and substantial evaluation of these
features on different classifiers is performed. Moreover,
we evaluate our predictions using metrics including
Accuracy, F1 score and MCC [14]

3) We perform comprehensive data analysis with UMAP
[15] embeddings to show the how different feature
contribute in task predictions and RTD classification.

II. RELATED WORK

Reflective thinking is a ambiguous concept [16]. Dewey
[17] [18] introduced the term ”Reflective thinking”, where
he theorised the five phases of reflective thinking which are
warranted for teaching and learning. Gelter [19] has explained
why reflective thinking is uncommon. They propose that
spontaneous reflective thinking happens only when something
has gone wrong making reflective thinking rare. Reflective
thinking is very important for cognitive thinking and learning,
and for pedagogical purposes, it enables students to better
evaluate themselves by structuring their thoughts in a fo-
cused manner. This helps them to better resolve uncertainties
and complex situations [20]–[23]. Volta et. al. [24] analysed
the cognitive states of visually impaired children solving

mathematical tasks by examining the body communication
indicative of engagement and confidence levels. Consequently,
2D positional data demonstrates the capability for automatic
engagement and confidence level detection. The works on
reflective thinking using different modalities have been largely
focused on a few specific domains ranging from academics,
healthcare and music learning. Johnston et. al [25] outlined
a theoretical approaches to encourage creative and reflective
approach to music making.

There is limited research on automatic detection of reflective
thinking. Toptsis et. al. [26] propose the use of artificial k -lines
to solve three different problems, illustrating its application
in inter-domain areas. Liu et. al. [27] used online text data
of teachers to analyse their reflective thinking. Based on the
outcome of inductive content analysis [28], a single-label text
classifier was built which was then applied on large-scale
unstructured data. Liu et. al [5] used text data to understand
pharmacy student’s reflective statements about their work
placement. They developed a machine learning approach for
binary classification on the text data and evaluated them
on four different classifiers, on a dataset of 301 statements.
Olugbade et. al [2] evaluated the reflective thinking among 26
children in mathematical problem solving settings. They used
LSTM networks on 17 joint positions to temporally determine
the reflective behaviour. Another branch of approach to any
behaviour-based recognition is to discern the tasks or activities
involved. This task-based solution has been shown to influence
the final behaviour prediction in a favourable manner. Wang et.
al. [29] performed continuous protective behaviour detection
based on Human Activity Recognition (HAR) using Graph
CNNs [30] and LSTMs.

Aside from reflective thinking, a great deal of work has been
done identifying affect using multiple modalities. Hinduja et
al. [31] showed that hand crafted features can be used to
detected empathy with the help of machine learning. They
were able to detect valence using multimodal data and different
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Fig. 2: Task-wise distribution of WeDraw-1 dataset [2].

machine learning algorithms for each modality. Srivastava et
al. [32] used multimodal data to detect engagement levels.
They showed the affect of unbalanced data on performance
metrics and that body landmarks can be used to detect affect.
Aathreya et al. [33] used multi level training to boost perfor-
mance, that is, they trained the network at different levels.

III. DATA ANALYSIS

A. WeDraw-1 Dataset

The WeDraw-1 dataset [2] consists of 2090 movement
sequences of 13 children as training samples, 792 movement
sequences of 5 children as validation samples, and 672 move-
ment sequences of 6 children as testing samples. Each sample
contains an M × N matrix, where M = 51 and refers to
the 3D location of 17 full-body joints and T denotes the
number of frames in that sample. The number of frames
varies in range 11-146 among participant due to frame dropout
during recording, with the mean length of sequences being
empirically determined as 120. Each sample refers to a 5-
second segment of a participant when performing one of the
three tasks. More specifically, Task 0: Forming Angles; Task
1: Finding Symmetry & Making Shape Reflections; and Task
2: Bodily Angles Sums and Differences, Rotating in Angles.

The data is divided into 2 classes - reflective thinking
present (RTD) and absent (Non-RTD). The distribution of
samples among these two classes is highly imbalanced, with
333 RTD sample over 1757 Non-RTD samples in the training
sample. See Fig. 2 for the task-wise distribution.

B. Handcrafted and Raw Features

1) Raw Features: The WeDraw-1 movement dataset [2]
consists of raw features which have been used in our analysis.
The dataset is comprised of sequences where each sequence S
belongs to a task t ∈ [0, 1, 2]. S consists of 3D positions for
17 different joints. These features are denoted by Rt ∈ R51×f ,
where f represents the number of frames in S and 51 is the
flattened dimension for (17×3) joint positions. See Fig. 3 for
an example sequence of the 3d joint plots.

As part of preprocessing, we first normalize the data to
make it invariant to any feature scaling within the dataset.
We perform z-score normalization [34] to bring the data to a

Fig. 3: An example sequence for a task t . Ri is the 17 joint
position for the frame i .

zero mean and unit variance. Next, to make the raw features
compatible with the various classifiers and deep learning
models, we re-sample the given features to a fixed number
of frames. Therefore, Rt is now resampled to Rt ∈ R51×k ,
where k is the fixed value.

2) Handcrafted Features: The handcrafted features were
divided into m = 5 distinct segments Hseg = {Left hand to
Right Hand, Head to Left hand, Head to Right hand, Head
to Right knee, Head to Left knee} (Fig. 4). We empirically
found these features to be well suited for recognizing reflective
thinking. To extract the handcrafted features, we first handled
the NaN values values by keeping them invariable. Hence,
while calculating the mean and standard deviation, the NaN
values were removed. Secondly, person dependent z-score
normalization was used by evaluating the participant ids.
Consequently, the range of the normalized data was [−3, 3].
Next, the data was iteratively resampled to size k , to make it
compatible with each of the classifiers. Finally, we extracted
features based on the joint locations, where every feature was
comprised of two joints (Hseg). The Euclidean distance, D,
between the two joints was calculated, and then concatenated
into our new feature vector F = {D1, ... , Dm}, where Di is
the i th distance calculated from Hseg .

3) Handcrafted Features - Extended: To investigate the
contribution of different body landmarks, we also extracted
h = 29 hand-crafted features (”FEATS” [2]). As the samples
are of varying length, the raw signals are first resampled to
k frames such that Ri

t ∈ R51×k . Extracted features include
head and trunk orientation, positional and angular energy,
range and amount of movement, and hand-to-head distance.
The features were then concatenated into a new feature vector
Fext = {f1, ... , fh}, where fi is the i th extracted feature. We
refer the reader to the work from Olugbade et al [2], for
specific details on the 29 extracted features.

4) Temporal Distances: Similar to Section III-B2, where
we calculate the euclidean distances between the joints within
a single frame of the sequence S, we also calculate the
euclidean distances along the temporal dimensions between
two consecutive frames of the same joint. Given a sequence
with f frames, we calculate the distance as shown below

Di
j =

√
(Ri+1

j −Ri
j )2, (1)
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Fig. 4: Handcrafted features (Hseg).

where i and i + 1 denotes the joint positions between two
consecutive frames in the sequence for the joint j . These
distances are then concatenated into a new feature vector
Ftemp = {D1, ... , Df−1

j }, where Di is the i th distance, and
resampled to Dj ∈ R17×k .

C. Data Augmentation

To handle the imbalance in the given dataset, we inves-
tigate multiple data augmentation techniques to assess their
performance. In some cases, there is a 1:40 ratio between
the majority and minority class (Fig 2). It is worth noting
that by simply oversampling the minority class with repetition
resulted in overfitting. We detail the investigated techniques in
the following subsections.

1) SMOTE: Synthetic Minority Oversampling Technique
(SMOTE) [7] is a widely used oversampling technique where
synthetic examples can be created for the minority class. It
works on the principle of nearest neighbors where it generates
new examples by combining the target feature and the feature
of it’s neighbor. Motivated by applications of SMOTE and its
variants [35], and it’s applicability to continuous data [36], we
seek to resolve the data imbalance using SMOTE. We detail
the effect of SMOTE in Section V, where we demonstrate the
improvement in training, as well as prediction on unseen data
which suggests SMOTE works well in this context.

2) Reflection and Rotation: There has been a significant
research on image classification problems that shows the
effectiveness of image rotation, flipping and geometric trans-
formations [37], [38] as a means of handling imbalanced data.
Similarly, olugbade et. al. [2] apply reflection on the joints by
inverting each of the 3 axes to create 4x more data. In this
paper, we aim to implement a similar augmentation technique
for 3D plots by applying a rotation matrix along the z-axis
on the raw features (III-B1). This is performed by multiplying
each feature R ∈ R17×3 by a rotation matrix λ as

Rot(R) = λ3×3 · RT
3×17, (2)

which rotates the original 3D plot along the z- axis by 90◦.
Fig. 6 shows the original joint positions for a frame vs the
joint positions rotated along the z-axis by 90◦.

D. Uniform Manifold Approximation and Projection (UMAP)

Considering the bag of features and augmentation tech-
niques available to us (R,F ,Fext and Ftemp), it is important
to find the right combination which achieves the optimum per-
formance on the classifiers. To perform this task, we isolate the
feature(s) that are unlikely to contribute in RTD classification
via dimensionality reduction [39] and empirically choose the
best augmentation techniques.

Since our pipeline is task-specific, we first plot the UMAP
embeddings [15] of raw features for the tasks as shown in
Fig. 7. UMAP is a dimensionality reduction technique that
works on the principle of topological data analysis. The plot
shows a clear segregation between different tasks, especially
for task 2. This can be explained, in part, by the nature of task
2 where the participants are mostly seated with movements
limited to the arm and shoulder. Considering this, we used the
raw features for task prediction, which is the first step in our
proposed pipeline (Fig. 1).

To assess and pick the feature for RTD classification, we
plot the task-wise UMAP for all the features mentioned in
section III-B. Generally, the UMAP embeddings do not show
a clear distinctions for RTD segregation. Consequently, we use
the embeddings to rule out the features that don’t add to the
classification. Figs. 5, 8 and 9 show the plots for task 0, 1
and 2 respectively for each feature type (e.g. raw). Although
none of the plots show a clear distinction between the RTD
labels, subplots (c) and (d), for all 3 figures, suggest the least
amount of separation for handcrafted-extended and temporal.
Considering this, for our selected feature types, we use raw
and handcrafted features. We also justify this finding in the
experiments in Section V.

IV. METHODOLOGY

Fig. 1 gives an overview of the proposed architecture. Based
on the comprehensive study on different features (Section III),
the proposed pipeline ultimately utilizes the raw and hand-
crafted features with SMOTE for augmentation. To clarify,
we only apply SMOTE to the training set and use random
forest [12] and gradient boost classifiers [13] for task and RTD
predictions.

A. Task prediction

As the proposed approach is task-specific, accurate classi-
fication of RTD per class is contingent upon the task classifi-
cation itself. Any error in task classification propagates to the
RTD classification thus affecting the overall performance. As
a result, the task predictor must be as precise as possible.
As shown in Fig. 7, the raw features quite distinctively
categorize the tasks and consequently, are best suited for
task classification. This is the first step in Fig. 1a, where a
random forest classifier, RFtask , is used to predict the tasks.
Subsequently, the output of the RFtask is captured by a sub-
module for task-wise segregation of features (Fig 1b).
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(a) Raw (b) Handcrafted (c) Handcrafted - Extended (d) Temporal

Fig. 5: UMAP embeddings, for different feature types, for Task 0 on RTD labels.

(a) Original plot (b) Rotated by 90◦

Fig. 6: 3D rotation along z-axis.

Fig. 7: UMAP embeddings of Raw Features based on tasks.

B. Task-wise segregation of features

Since the following steps involves classifying the labels, the
raw and handcrafted features are used with multiple classifiers.
Each of the features must be segregated accordingly based on
the predicted task (see Fig. 1b). As a result, the raw features
Rall are split into [R0,R1,R2] and handcrafted features, F
are split into [F0,F1,F2] where each sub-feature belongs to
its respective task predicted.

C. Mixture of Classifiers

The mixture of classifiers are shown in Fig. 1a which
predicts the RTD classification of different tasks and combines
them into a single output vector y . The UMAP embeddings
helped in recognizing the features unsuitable for classification,
omitting them from the pipeline. Through a grid-search, we

aim to find to the best set of classifiers and hyper-parameters
for the raw and handcrafted features. Since the dataset is highly
imbalanced, we focus on F1 minority and MCC scores to
select the best combination of classifier and features. Other
metrics such as accuracy and F1 majority remained fairly
consistent throughout our experiments and have been shown
as imprecise metrics for imbalanced data evaluation [40].

For task 0, Gradient Boosting (GB0) was found to pro-
vide the best MCC and F1 minority using the handcrafted
features F0. Gradient boosting has been shown to improve
the performance of the model with imbalanced datasets [41],
[42]. It is a classifier that uses a set of weak learners to
build a strong learner (decision trees). It’s a method to deal
with imbalanced data wherein the training set is successively
constructed based on the misclassified examples. The classifier
GB0 was configured with 200 trees with a learning rate of 0.5,
and the max depth, of individual estimators, was kept to one.

For task 1, Random Forest classifier (RF1) provided the best
results in terms of F1 minority and MCC with the raw features
R1. Notwithstanding the augmentation technique (SMOTE)
applied during the pre-processing stage, we nonetheless mod-
ify the classifier to accommodate for the data imbalance.
Random forest with its default parameters can be unsuitable
for imbalanced datasets [43], and therefore we opt for a
class weighted random forest where weights are assigned to
each class while calculating the impurity score of the chosen
split point. RF1 was configured with 100 estimators with a
minimum of 1 leaf at the leaf node.

Finally, for task 2, the best combination of features and
classifiers was found to be the handcrafted features F2 with
Gradient Boosting, GB2. From our 3D plots, task 2 was
distinctively different from the other 2 where the participant
was seated throughout the experiments and therefore achieved
the lowest performance compared to other two tasks (Fig. 3).
As per the description, this particular task implied to have
minimal movements of the body making it challenging. GB2
was configured with 150 estimators and a learning rate of 0.8
with a maximum depth of individual estimators at four.

V. EXPERIMENTS AND RESULTS

A. Task and RTD prediction

As can be seen in Table I, RFtask is able to achieve a high
accuracy of 91% with an average F1 score of 0.90 and MCC
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(a) Raw (b) Handcrafted (c) Handcrafted - Extended (d) Temporal

Fig. 8: UMAP embeddings, for different feature types, for Task 1 on RTD labels

(a) Raw (b) Handcrafted (c) Handcrafted - Extended (d) Temporal

Fig. 9: UMAP embeddings, for different feature types, for Task 2 on RTD labels

TABLE I: Task prediction across training and validation sets,
for different features and different classifiers.

Dataset Method Feature Accuracy F1 MCC

Train Random Forest Raw 1 [1.0, 1.0, 1.0] 1

Train LSTM Handcrafted - Extended 0.81 [0.75, 0.81, 0.86] 0.81

Val Random Forest Raw 0.91 [0.89, 0.87, 0.95] 0.86

Val LSTM Handcrafted - Extended 0.75 [0.77, 0.65, 0.81] 0.62

TABLE II: Grid-search results of the pipeline. HF refers to
Handcrafted Features (F).

Dataset Task Method Feature Accuracy F1 MCC

Train

0 Gradient
Boosting HF 1.0 [1.0, 1.0] 1

1 Random
Forest Raw 1.0 [1.0, 1.0] 1

2 Gradient
Boosting HF 1.0 [1.0, 1.0] 1

ALL [RF, GB] [HF, Raw] 1.0 [1.0, 1.0] 1

Validation

0 Gradient
Boosting HF 0.93 [0.96, 0.4] 0.37

1 Random
Forest Raw 0.9 [0.94, 0.38] 0.35

2 Gradient
Boosting HF 0.82 [0.90, 0.22] 0.14

ALL [RF, GB] [HF, Raw] 0.85 [0.91, 0.28] 0.2

0 + 1 [RF, GB] [HF, Raw] 0.92 [0.96, 0.39] 0.36

Test ALL [RF, GB] [HF, Raw] 0.81 [0.89, 0.23] 0.13

TABLE III: RTD classification with SMOTE as Data Augmen-
tation technique using LSTM networks

Dataset Task Accuracy F1 MCC

Train

0 0.86 [0.87, 0.85] 0.73

1 0.72 [0.74, 0.7] 0.45

2 0.73 [0.75, 0.71] 0.47

ALL 0.91 [0.92, 0.91] 0.83

Validation

0 0.9 [0.95, 0.09] 0.07

1 0.68 [0.84, 0.34] 0.26

2 0.73 [0.84, 0.06] 0.05

ALL 0.75 [0.85, 0.18] 0.05

of 0.86. We believe this performance is justifiable for further
steps down the pipeline.

For RTD classification (Table II) the results of the validation
set are consistent with the test set. We achieve a superior
performance for task 0 and 1 over 2, which is reflected in
the overall result. This can be further seen in the rows for
tasks 0 and 1 in Table II where we see a large margin in the
F1 and MCC scores between ALL and the rows for those tasks.

B. Training LSTM models

1) Extended Handcrafted Features: For resampling, we
empirically chose the value of T = 120. The feature set
Fext ∈ Rn×120×29, where n is the number of training samples
is fed to a stacked LSTM network. This network consists of
three stacked LSTM layers with 32 cells each. The output of
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(a) Accuracy (b) Loss

Fig. 10: Accuracy/loss plots for training vs validation (LSTM).

the stacked LSTM network is then passed to a Dense layer
with softmax activation and N neurons. To study the impact
of handcrafted features, we trained different models for task-
prediction (LSTMtask ) and RTD-prediction(LSTMRTD). Since
each sequences S belongs to a task t ∈ [0, 1, 2], N=3 for
model LSTMtask , whereas N=2 for model LSTMRTD , which is
responsible for detecting reflective thinking. Both models were
compiled with Adam [44] as the optimizer with a learning
rate of 0.001 and are trained for 50 epochs. These models are
trained with the original data distribution.

Table I details the performance of our LSTMtask when
trained with the 29 handcrafted features. We can see that this
model achieved an accuracy of 75% on the validation set with
an average F1 score of 0.74 and MCC score of 0.62. In the case
of our model LSTMRTD , due to the high imbalance in dataset,
the model was overfit to the majority class (Non-RTD) and
performs poorly when detecting reflective thinking.

2) Raw Features: In our experiments, we train the LSTM
[8] models on raw features, R, using the two data augmen-
tation techniques as detailed in Section III-C. This network
consists of 4 stacked LSTM layers with 32 hidden cells in
each. A learning rate of 1e-3 was set with Adam optimizer
[45] was used for 250 epochs. Table III shows the result of
training with SMOTE as data augmentation. The table draws
two observations - The lstm network clearly overfits on the
data. This can be seen in the Fig. 10 which shows the plots for
accuracy and loss for training and validation set. The validation
loss appears to be fluctuating throughout which is another
indication of the model not learning. Additionally, it is unable
to handle the class imbalance as can be noted in Table III.

Table IV shows the result of LSTM trained on raw features
using rotation as data augmentation. It can be seen that rotation
does not contribute to the performance of the network. LSTM
have been a well known deep learning model to handle
temporal instances and in this case, due to the high class
imbalance, Most of the outputs are the majority class.

C. No Augmentation

A final experiment that we performed was using the original
pipeline architecture (Fig. 1) but without any augmentation
techniques. This was to investigate if the finely tuned hyper-
parameters of the classifiers and the data augmentation are
positively contributing to our final results. Table V shows the

TABLE IV: RTD classification with Reflection as Data Aug-
mentation technique using LSTM networks.

Dataset Task Accuracy F1 MCC

Train

0 0.77 [0.87, 0.25] 0.22

1 0.92 [0.92, 0.92] 0.85

2 0.92 [0.91, 0.89] 0.87

ALL 0.92 [0.88, 0.85] 0.85

Validation

0 0.91 [0.95, 0.0] 0.08

1 0.87 [0.93, 0.12] 0.08

2 0.87 [0.91, 0.02] 0.04

ALL 0.87 [0.87, 0.06] 0.04

TABLE V: Results on validation set without augmentation.

Dataset Task Method Feature Accuracy F1 MCC

Validation

0 Gradient Boosting HF 0.94 [0.97, 0.0] -0.02

1 Random Forest Raw 0.88 [0.94, 0.07] 0.05

2 Gradient Boosting HF 0.7 [0.82, 0.05] -0.09

ALL [RF, GB] [HF, Raw] 0.85 [0.90, 0.03] 0.0

result of this approach on the validation set. Once again, the
results follow a pattern akin to previous experiments which
resulted in majority class prediction throughout where the
model is unable to learn the minority class data. Although
the accuracies for both gradient boosting and random forest
are reasonably high, it can be seen that the minority class F1
and MCC are significantly lower compared to the augmented
results (Table II). As can be seen in the lat column of Table
V, the MCC scores show a slight negative correlation with
Gradient Boosting, and close to 0 correlation for Random
Forest. This suggests that SMOTE is synthetic good synthetic
features, that are similar to the real data, and helping mitigate
the class imbalance found in the WeDraw-1 dataset.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we propose a task-specific architecture where
we first predict the task and then the corresponding RTD
classification. The proposed architecture achieved competitive
results on tasks 0 and 1, given the high imbalance in the
dataset and produced decreased accuracies for task 2. This
can explained, in part, by the nature of task 2 which further
reduced the overall performance of the model. Additionally,
we provided an analysis of different features and augmentation
techniques, as well as UMAP embeddings.

Although these results are encouraging, there are some
limitations. First, is it’s ability to predict the minority class
(reflective thinking). Considering this, we will further inves-
tigate new feature types, including the fusion of hand-crafted
and deep features. Secondly, only the WeDraw-1 challenge
dataset [2] was evaluated. While this is a challenging, real-
world dataset, to accurately assess the utility of the proposed
approach, larger more varied datasets need to be analyzed.
Finally, while random forests have shown to work well for 3D
gesture data [46], they used balanced data. Using unbalanced
data, as done here, new more advanced classifiers are needed
to accurately recognize reflective thinking.
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