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Abstract. Identifying Out-of-distribution (OOD) data is becoming in-
creasingly critical as the real-world applications of deep learning methods
expand. Post-hoc methods modify softmax scores fine-tuned on outlier
data or leverage intermediate feature layers to identify distinctive pat-
terns between In-Distribution (ID) and OOD samples. Other methods
focus on employing diverse OOD samples to learn discrepancies between
ID and OOD. These techniques, however, are typically dependent on the
quality of the outlier samples assumed. Density-based methods explic-
itly model class-conditioned distributions but this requires long training
time or retraining the classifier. To tackle these issues, we introduce Flow-
Con, a new density-based OOD detection technique. Our main innova-
tion lies in efficiently combining the properties of normalizing flow with
supervised contrastive learning, ensuring robust representation learning
with tractable density estimation. Empirical evaluation shows the en-
hanced performance of our method across common vision datasets such
as CIFAR-10 and CIFAR-100 pretrained on ResNet18 and WideResNet
classifiers. We also perform quantitative analysis using likelihood plots
and qualitative visualization using UMAP embeddings and demonstrate
the robustness of the proposed method under various OOD contexts.
Code will be open-sourced post decision.
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1 Introduction

Visual recognition systems are trained under the closed-world assumption that
the input distribution at test time remains consistent with the training dis-
tribution. This is seldom the case and the model is expected to identify and
reject unknown data instances [2, 13, 15]. In practical scenarios, the test sam-
ples may experience gradual distributional shifts and as a result, the model can
make arbitrarily incorrect predictions. These shifts can be categorized into se-
mantic and covariate. Semantic shift (far-OOD) is defined by inclusion of new
categories of objects during test time, thereby changing label space. Note that
changes in label space naturally impacts the input space as well. On the other
hand, covariate shift (near-OOD) is defined by change in the input space only,
where the label space remains the same during test time. Collectively, the two
present a significant challenge for real world deployment of well-trained systems.
This is especially critical in applications such as medical diagnosis [36, 42] and
autonomous driving [9].
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Fig. 1: Intuition behind FlowCon on toy moons dataset with OOD samples. Normal-
izing flows trained without contrastive loss (Lflow only) does not account for the class-
specific information in the dataset and transforms the data into a unimodal Gaussian
distribution as latent space, z. Flow model trained with Lflow + Lcon is able to learn
class-specific multimodal Gaussian distributions. Consequently, when plotted against
log p(z) using heatmaps, the unimodal Gaussian cluster does not account for OOD
samples and assigns high likelihood irrespective of samples it was trained on. Con-
versely, optimizing Lflow +Lcon pushes ID data into the high density region and OOD
samples into the low density region.

Existing methods for OOD detection primarily focus on semantic shift de-
tection. Often fine-tuning the softmax scores of the pretrained classifier through
temperature scaling [24], energy scoring [26], or thresholding [39]. While these
methods are simple but powerful, they have been shown to be less effective under
near-OOD context [44,46]. Other methods leverage large OOD datasets in their
training paradigm to make the models sensitive to the OOD test set. Neverthe-
less, it is unrealistic to make assumption on the vast data space of OOD, which
might ultimately introduce bias in the model [38].

Density-based methods define the score function using the likelihood val-
ues, which explicitly model the ID data and identify the low density test data as
OOD [24,49,51]. Although usually reliable, these methods require preserving the
class information by training one model per class [51], or retraining the entire
classifier under hybrid settings [49]. Zisselman et al . [51] proposed deep residual
flows to train one model per class for each layer. This results in significant train-
ing requirements given the model and ID dataset being used. For example, deep
residual flows trained on CIFAR-100 and pretrained with ResNet-18, will result
in 400 flow models (100 classes× 4 layers). This is potentially infeasible as the
complexity of model and dataset grows. Meanwhile, Zhang et al . [49] introduced
joint training of the flow model and classifier to represent a multi-modal distri-
bution which can be leveraged for OOD detection. This requires retraining the
original classifier models which is not suitable for real-world deployment.
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In this work, we closely follow OOD detection using density estimation. We
build upon the principles of generative models, specifically normalizing flows [33],
to develop a contrastive learning-based approach to tackle the above mentioned
constraints. More precisely, in addition to maximizing the log-likelihood of the ID
data, we introduce a new loss function which contrastively learns the class spe-
cific distributions of the ID data. Unlike the conventional contrastive losses [5,18]
where the similarity function is typically the cosine similarity of two feature vec-
tors, we leverage Bhattacharyya coefficient [3], which is designed to measure the
similarity between two distributions. The new score emphasizes the network to
understand and differentiate between distributions in a contrastive manner. Col-
lectively, the two losses ensure that the network is encouraged to learn semanti-
cally meaningful representations enriched with tractable densities. For readabil-
ity, we name our approach as FlowCon. Fig. 1 demonstrates the idea of FlowCon
on a toy dataset. Maximizing the likelihood (Lflow) of the dataset without con-
sidering the class information results in a latent space with a single Gaussian
cluster. Inclusion of the class-preserving contrastive loss (Lflow + Lcon) pulls
the latent Gaussian distribution belonging to same class together, while pushing
other distributions away. The figure also shows log p(z) values using heatmaps
to show FlowCon’s discriminative properties along with ID/OOD separability.

To ensure that the original classifier is not modified, we train the flow model
and apply the two loss functions (Lflow + Lcon) on the penultimate layer of
the pretrained classifier. As shown by Kirichenko et al . [22], training a flow
model on deep features focuses on the semantics of the data rather than learning
pixel to pixel correlations. To assess the effectiveness of FlowCon, we perform
quantitative evaluations on benchmark datasets CIFAR-10 and CIFAR-100. We
also investigate OOD contexts including far-OOD, near and far-OOD, and near-
OOD. The proposed method is competitive or outperforms state-of-the-art OOD
detection methods across multiple metrics. To summarize, the contribution of
our work is three-fold:

1. A new density-based OOD detection technique called FlowCon is proposed.
We introduce a new loss function Lcon which contrastively learns class sep-
arability in the probability distribution space. This learning occurs without
any external OOD dataset and it operates on fixed classifiers.

2. The proposed method is evaluated on various metrics - FPR95, AUROC,
AUPR-Success, and AUPR-Error and compared against state of the art. We
observe that FlowCon is competitive or outperforms most methods under
different OOD conditions. Additionally, FlowCon is stable even for a large
number of classes and shows improvement for high-dimensional features.

3. Histogram plots are detailed along with unified manifold approximations
(UMAP) embeddings [28] of the trained FlowCon model to respectively
showcase it’s OOD detection and class-preserving capabilities. We also show
FlowCon’s discriminative capabilities.

2 Related Work

Post-hoc methods have the benefit of being straightforward to use. They avoid
retraining the original classifier or additional training on top of the classifier.
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Hendrycks et al . [14] proposed early work on OOD detection by considering the
classifier predicted softmax probabilities as the OOD scores. The authors em-
perically show that the softmax scores of OOD data sufficiently differ from the
ID data and therefore forms a baseline for all the subsequent methods. Liang et
al . [25] applied temperature scaling to the softmax probabilities to improve the
ID/OOD separability. Additionally, they applied inverse FGSM [11] on the test
data that further improved the separability. Liu et al . [26] employed a parameter-
free softmax caliberation instead of temperature scaling. The authors replace the
softmax score with an energy score whose computation forms a theoretical per-
spective of likelihoods [30]. Sun et al . [39] designed a truncation technique called
ReAct on the penultimate activation layer using a threshold. This truncation
threshold was chosen to be the 90th percentile of the ID activations. The authors
additionally showcase the compatibility of ReAct with previous techniques such
as ODIN [25], MSP [14] and Energy [26] that further improved the scores. Lee
at al. [24] use Mahalanobis distance to separate ID/OOD samples. The authors
compute class-wise empirical mean and covariance for all the average network
activations. This is performed over all the training sets which are then mod-
elled as class conditioned Gaussian distributions. During test time, the score is
the maximum weighted Mahalanobis distance between test sample and each dis-
tribution. In our experiments, we compare FlowCon with these state-of-the-art
techniques and show competitive results across multiple metrics.

Outlier-based methods introduce additional training phases extending the
pretrained classifier [27, 29, 38, 46]. Hendrycks et al . [16] proposed exposing the
network to outlier samples thereby enhancing its ability to identify and flag
test samples that it has not encountered before. Moreover, the authors leverage
OOD data to learn heuristics of the ID data without explicitly modelling them.
Hornauer et al . [17] propose a heatmap-based approach by attaching a decoder
network to a trained classifier layer. Similar to the work from Hendrycks et al.,
they use outlier OOD samples to define boundaries between ID/OOD samples. A
zero-response heatmap output is recognized as ID and a high-response output is
categorized as OOD. In our experimental design, we compare FlowCon with the
heatmap-based results and follow a similar experimental setup. It is important
to note, however, that we did not include them in experiments that require
reproducing the results as the OOD dataset they used [41] has been withdrawn1.

Density-based methods model the ID data without usage of outlier exposure
[1,7,34,37,52]. Zhang et al . [49] propose joint training of classifier and flow models
to ensure stronger discriminative and OOD detection capabilities. The authors
present a strong motivation to model likelihood of ID data using normalizing
flows and present better results on hybrid training as opposed to using fixed
classifiers. However, hybrid approaches require retraining the entire classifier
which is not suitable for real-world applications. Zisselman et al . [51] address
normality assumptions with Mahalanobis distance [24] by training class-wise
residual flows [4] for each layer of the model. This ensured that the latent features
post residual training are a true Gaussian distribution. On the other hand, we
train FlowCon only on the penultimate layer of the fixed classifier wherein a
single model learns class-wise distribution in a supervised manner. We improve

1 https://groups.csail.mit.edu/vision/TinyImages/
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upon the ResFlow [51] model by resolving the training pipeline to consist of only
a single model. We compare FlowCon with ResFlows and evaluate extensively
on OOD detection performance and histogram interpretability (Section 5.4).

3 Background

In this section, we briefly introduce the formulation of normalizing flows based
on coupling layers and supervised contrastive learning.

3.1 Normalizing Flows

Normalizing flows [40] are a class of deep generative models [21] that learn to
transform a complex distribution, pX(x) to a base distribution, pZ(z) using
a sequence of invertible transformations, z = f(x). These transformations are
typically in the form of neural networks parametrized by their weights. Using the
change of variables formula, the log-likelihood for a datapoint x is maximized
by,

Lflow = − log pX(x) = −
[
log pZ(f(x)) + log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣]. (1)

The base distribution pZ(z) is commonly chosen to be standard Gaussian. To sat-
isfy the properties required for Equation 1, f has additional constraints in model
architecture. More specifically, f should be bijective and the Jacobian determi-
nant of f should be easy to compute. Addtionally, due to bijective properties of
flow models, x ∈ Rd, and z ∈ Rd have same dimensions with z ∼ N (0, I). We
refer the readers to the works of Papamakarios et. al. [33] and Dinh et. al. [8]
for a comprehensive introduction.

3.2 Supervised Contrastive Learning (SCL)

SCL [18] is a family of representation learning frameworks that aim at learning
the most informative deep embeddings of images. Given a set of I data instances
{xi, yi}i=1,...,I in a multi-viewed batch, SCL takes the following form

Lsupcon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
S(zi, zp)/τ∑

a∈A(i) S(zi, za)/τ)
. (2)

Here, S(zi, zj) = exp(zi · zp) is the similarity function, zi = f(xi) is the latent
embedding of the anchor image xi, P is the set of all positives where yi = yp,
except zi, and A(i) ≡ I\i is the set of all positives and negatives, except zi. SCL
has shown strong results in creating successful semantic representations of input
datasets [43]. Moreover, Winkens et al . [44] demonstrated that the contrastive
approach to classification further improves OOD detection capabilities of the
classifier. In general, Equation 2 aims to minimize distances between data pairs
of similar classes while maximizing the distance between dissimilar classes using
the dot product between the feature vectors. For a more detailed introduction,
we refer the reader to works from Khosla et. al. [18] and Frosst et. al. [10].
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Fig. 2: Training pipeline of FlowCon. Given an input image, x, the pretrained classifier
first extracts deep features, zemb. The flow model then operates on zemb to obtain
the latent vector zflow, and its corresponding distribution, N (µ, σ). The loss Lflow

maximizes the likelihood of zflow on N (µ, σ), and simultaneously, Lcon ensures high
inter-class separability and low intra-class separability among the distribution N (µ, σ)
in a contrastive fashion.

4 Flow-based Contrastive Learning

Given an input image x ∈ RD in the batch, FlowCon initially extracts high
dimensional deep features using a pretrained classifier network. This new em-
bedding, zemb ∈ Rd is now used as input to the normalizing flow model to obtain
the latent embedding zflow ∈ Rd, µ ∈ Rd, and σ ∈ Rd. Details regarding training
and classification are given in Sections 4.1 and 4.2, respectively. See Fig. 2 for
an overview of the proposed architecture.

4.1 Training

To strike a good balance between discriminative and semantic properties of latent
embeddings zflow, we propose to effectively combine Equations 1 and 2. Instead
of a naive merging of equations, we use an efficient similarity measure, Sflow, that
uses the likelihood information, pZ(z), obtained in Equation 1. This reduces the
high-dimensional vector dot-product to a simple scalar product of likelihoods.
The new similarity function Sflow for a given batch is then written as

Sflow(zi, zj ,Ni) = exp

(
(pZ(zi|Ni) · pZ(zj |Ni))

τ1

)
(3)

where,

pZ(zi|Ni) =
1

σ
√
2π

exp

[
−1

2

(
zi − µi)

σi

)2]
, (4)

and τ1 is a hyperparameter. Here, pZ(zi|Ni) denotes the likelihood of latent em-
bedding zi belonging to distribution Ni. Note that pZ(zi|Ni) is obtained from
Equation 1 (as log pZ(z)). For ease of sampling in normalizing flows, Ni resolves
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to unit hypersphere. However, since our aim is to learn class-specific distribu-
tions, we let the flow network learn the distributions (see Fig 2). 2

Here, pZ(zi|Ni)·pZ(zj |Ni) should yield a high value when yi = yj . Conversely,
the product should yield a lower value when yi ̸= yj . This is analogous to
traditional SCL, where, the higher the dot product between the latent vectors,
the more similar the images are, and therefore, the closer they are in the feature
space. Conversely, if the dot product is low, the images are dissimilar, and hence,
farther apart in the feature space. Therefore, contrastive loss fits naturally in
this context. Additionally, the term inside exp in Equation 3 is the generalized
form of Bhattacharyya coefficient [3] when the hyperparameter τ1 = 0.5. Finally,
combining Equations 2 and 3 together we get,

Lcon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
Sflow(zi, zp,Ni)/τ2∑

a∈A(i) Sflow(zi, za,Ni)/τ2
. (5)

It is important to note that unlike the traditional contrastive learning methods,
besides the latent vector zi, the distribution Ni also serves as anchor.

Overall, optimizing Lcon has an intuitive interpretation as it learns distribu-
tions N in a contrastive manner. On the other hand, Lflow learns embeddings
zflow that belongs to the distributions learned by optimizing Lcon. The loss
function in Equation 1 remains the same and we optimize Equations 1 and 5
concurrently with a scaling constant λ as L = Lcon + λLflow.

4.2 OOD Detection with FlowCon

Ideally, at the end of training, we obtain a distribution, N , for each data point
in the training set X = {x1, x2, ..., xn}. For n data points, we will obtain
NX = {N1,N2, ...,Nn} distributions. To enable downstream tasks, such as OOD
detection, we simplify the task of dealing with n distributions by reducing them
to a smaller set of k distributions, where k is the number of classes. We perform
this by taking the emperical mean of the distributions per class. Therefore, the
parameters µc and σc of the distribution Nc for a class c is computed as

µc =
1

|Xc|
∑
i∈Xc

µi;σc =
1

|Xc|
∑
i∈Xc

σi, (6)

where Xc ≡ {i ∈ X : yi = c} is the total instances in the training set with class
label c. Repeating the process for each class, we get a total of k distributions
for the training set X , given by NX = {N1, ...,Nk}. To compute the score, S for
OOD detection on a test sample ztest, we simply compute its likelihood on all dis-
tributions and take the maximum value S(xtest) = maxi∈{1,...,k} pZ(ztest|Ny=i).

2 The idea of learned µ and σ was first adopted in the GLOW implementation in
https://github.com/openai/glow
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5 Experiments

5.1 Setup

Dataset and Models. We use CIFAR-10 [23] and CIFAR-100 [23] datasets as
in-distribution (Din). For OOD datasets (Dood), we rely on 6 external test sets:
iSUN [45], LSUN-Crop [47], LSUN-Resize [47], SVHN [32], Textures [6], and
Places365 [50]. For the pretrained classifier, we use ResNet18 [12] and WideRes-
Net [48] with depth 40 and width 2 which have been trained on both CIFAR-10
and CIFAR-100. This allows us to evaluate FlowCon on various scales of penul-
timate feature dimensions (512 for ResNet18 and 128 for WideResNet).

Evaluation Metrics. To provide the best metrics independent of a partic-
ular OOD score threshold, we evaluate FlowCon using four standard metrics,
AUROC, AUPR-Success (AUPR-S), AUPR-Error (AUPR-E), and FPR at 95%
TPR (FPR-95). AUROC integrates under the reciever operating characteris-
tics (ROC) curve measuring the model’s performance across various threshold
settings. AUPR-S is area under the precision-recall curve. It focuses on perfor-
mance of the model in correctly classifying ID samples. Conversely, AUPR-E is
the perfomance of the model in correctly identifying OOD samples. FPR-95 is
a measure of how often the model incorrectly identifies an OOD sample as ID
when it is correctly identifying 95% of ID samples. Similar to prior works [16,26],
the entire test set of ID samples are considered and the number of OOD samples
are randomly selected to be one-fifth of ID test set. The results are averaged for
all OOD datasets.

Implementation Details We follow the experimental setup of Hornauer et
al. [17], wherein we build FlowCon on top of the pretrained Resnet18 and
WideResNet.3 For the flow model, we adopt a standard RealNVP architecture
with 8 coupling blocks and a single flow layer. 4 For ResNet18, we train FlowCon
on the fixed 512 dimensional penultimate features and 128 dimensional features
for WideResNet. The multitask loss function Ltotal is optimized using Adam
optimizer [19] with a fixed learning rate of 1e − 5 and weight decay of 1e − 5.
For all experiments, the flow model is trained for 700 epochs with a batch size
of 64 with an image size of 32× 32. Moreover, we emperically find λ value to be
0.07. We fix the Lcon hyperparameters τ1 and τ2 at 1.5 and 0.1, respectively.

FlowCon vs. Competitive baselines We compare FlowCon with methods
that operate only on fixed classifiers. These include:

– Post-hoc methods that either calibrate or scale the softmax scores like MSP
[14], ODIN [25], Mahalanobis [24], Energy [26], and ReAct [39]. Note that
ODIN and Mahalanobis require finetuning the hyperparameters based on
external OOD datasets. For all the post-hoc methods, we follow the hyper-
parameter selection which is consistent with Hornauer et al. [17].

3 Classifier weights obtained from https://github.com/jhornauer/heatmap_ood
4 https://github.com/PolinaKirichenko/flows_ood
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– Outlier-based. Since our approach performs additional training, we also con-
sider methods that train on outlier OOD datasets and a flow-based method.
For outlier trained methods, we compare with the heatmap-based approach
as proposed by Hornauer et al . [17] which showed state-of-the-art results.

– Flows. We consider residual flows [51] and train the classifier features for all
layers in a class-wise manner. Similar to Mahalanobis, residual flows addi-
tionally trains a regressor fine-tuned on OOD test sets to predict the scores.
In contrast, FlowCon operates on penultimate features without a post in-
ference regressor. We show that FlowCon outperforms residual flows across
the majority of experiments, especially under challenging OOD contexts.

5.2 Result on OOD Contexts

We study the OOD detection capabilities of FlowCon under three type of (Din,
Dood) pairs. These pairs are cover a broad spectrum of OOD test instances
encountered in the real-world. Similar to the works of Winkens et al. [44], each
ID dataset will be paired against:
Far-OOD. We compare both CIFAR-10 and CIFAR-100 against the six exter-
nal datasets (Dood) listed in Section 5.1. These far-OOD experiment pairs are
characterized by semantic shifts. The performance of FlowCon along with its
benchmarks is listed in Table 1. We observe that FlowCon performs exceedingly
well for CIFAR-10 and CIFAR-100 pretrained on ResNet18 model. This indicates
that FlowCon is robust even for a higher number of classes. For WideResNet
model trained on CIFAR-10, FlowCon reports the highest performance for AU-
ROC and AUPR-E with 96.2 and 86.90, respectively. It achieves second-best
performance for AUPR-S and FPR-95 reported as 98.84 and 19.10, respectively,
after the Heatmap approach [17]. For WideResNet on CIFAR-100, FlowCon ob-
tains the best performance on AUPR-S with a score of 96.60 while retaining
competitive measures across all other metrics. For instance, ResFlow secures the
best AUROC and AUPR-E, however, its AUPR-S remains low, indicating more
misclassified ID samples in an effort to filter out OOD samples. Heatmap uses
external OOD datasets during training and remains consistent in it’s perfor-
mance with the lowest FPR-95. We provide results on individual OOD datasets
in the supplementary material.

Mixed near- & far-OOD. CIFAR-10 (Din) is assessed against CIFAR-100
(Dood), which is regarded as a mixed near- and far-OOD scenario due to the
shared classes between the two datasets. This particular pairing involves both
semantic and covariate shifts within the test data. Table 2 compares our approach
with post-hoc methods and ResFlow. Note that Heatmap is evaluated only on
far-OOD context in this work since the dataset primarily used by outlier training
methods is 80 million TinyImages [41], which has been withdrawn from further
usage5. FlowCon demonstrates the best performance for ResNet18 model across
all metrics. For WideResNet, it acheives the best AUPR-S (96.90) and second
best FPR-95 (56.90) scores. Energy-based thresholding [26] achieves the highest
AUROC and AUPR-E. Once again, ResFlow reports the lowest FPR-95 which
is obtained at the cost of poor AUPR-S measure.
5 https://groups.csail.mit.edu/vision/TinyImages/
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Table 1: Far-OOD: Comparison of OOD detection performance during only semantic
shift. ∗ Uses OOD data to finetune the hyperparameters. † Uses OOD dataset for
training. ‡ Explicitly uses flow models. The results are averaged over the number of
OOD test sets (Dood) mentioned in Section 5.

Din Method AUROC ↑AUPR-S ↑AUPR-E ↑ FPR-95 ↓(model)

CIFAR-10
(ResNet)

MSP [14] 90.72 97.89 63.48 55.21
ODIN* [25] 88.33 96.67 71.49 38.35
Mahalanobis* [24] 92.33 98.29 71.30 39.52
Energy [26] 91.72 97.90 72.12 37.97
ReAct [39] 91.71 97.89 72.55 36.52
ResFlow‡ [51] 95.6 99.35 82.82 13.22
Heatmap† [17] 96.47 99.17 83.73 15.37
FlowCon (Ours) 97.19 99.43 85.65 16.26

CIFAR-10
(WideResNet)

MSP [14] 91.48 98.18 63.47 56.77
ODIN* [25] 95.01 98.68 84.39 21.09
Mahalanobis* [24] 92.03 98.09 75.44 32.73
Energy [26] 94.91 98.75 80.89 24.26
ReAct [39] 51.92 85.46 17.53 97.12
ResFlow‡ [51] 81.58 66.09 86.78 49.11
Heatmap† [17] 96.36 99.07 86.73 14.06
FlowCon (Ours) 96.42 98.84 86.90 19.10

CIFAR-100
(ResNet)

MSP [14] 79.29 95.04 40.34 76.58
ODIN* [25] 83.28 95.96 48.74 67.96
Mahalanobis* [24] 73.46 93.00 35.90 79.46
Energy [26] 82.07 95.71 43.92 74.45
ReAct [39] 84.22 96.27 49.08 67.78
ResFlow‡ [51] 85.12 71.45 67.89 42.55
Heatmap† [17] 86.74 96.49 58.78 52.73
FlowCon (Ours) 88.22 96.85 67.89 41.85

CIFAR-100
(WideResNet)

MSP [14] 65.31 90.38 26.21 88.45
ODIN* [25] 79.43 94.60 43.98 73.19
Mahalanobis* [24] 73.99 92.58 43.80 68.45
Energy [26] 77.11 93.95 39.07 78.03
ReAct [39] 80.74 95.24 48.04 67.47
ResFlow‡ [51] 88.58 62.36 89.17 65.77
Heatmap† [17] 85.98 95.96 61.14 49.86
FlowCon (Ours) 83.62 96.60 53.34 60.28

Near-OOD. When CIFAR-100 (Din) is tested against CIFAR-10 (Dood), it is
treated as a near-OOD context because the test set experiences covariate shift
without any semantic alterations. Some literature treat covariate shift in test set
as ID data [46]. We believe that correctly classifying a test data under extreme
covariate shift reflects a classifier’s generalization ability, thus its identification
is crucial. As can be seen in Table 3, FlowCon exhibits superior performance
over other methods by attaining the highest score on ResNet18 model and re-
ports the best outcome on FPR-95 (82.85) for WideResNet model. Overall, the
scores for WideResNet model are shared by MSP, ODIN, Energy, ResFlow, and
FlowCon, further highlighting the challenges with near-OOD scenarios. Inter-
estingly, for WideResNet, we note that post-hoc methods in general display
moderately better performance for near-OOD scenarios as opposed to far-OOD
and mixed-OOD where training based methods (ResFlow/Heatmap) displayed
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Table 2: Near-far and near-OOD. Comparison of OOD detection performance during
both semantic and covariate shift. ∗ uUses OOD data to finetune the hyperparameters.
† Uses OOD dataset for training. ‡ Explicitly uses flow models.

Din Dood Method AUROC ↑ AUPR-S ↑ AUPR-E ↑ FPR-95 ↓(model)

CIFAR-10
(ResNet) CIFAR-100

MSP [14] 86.45 96.49 53.15 65.95
ODIN* [25] 64.79 89.86 24.32 90.85
Mahalanobis* [24] 63.90 88.83 29.57 82.55
Energy [26] 85.60 95.87 57.66 55.2
ReAct [39] 85.36 95.76 57.51 54.85
ResFlow‡ [51] 76.40 26.23 66.23 67.2
FlowCon (Ours) 93.97 98.74 73.84 35.95

CIFAR-10
(WideResNet) CIFAR-100

MSP [14] 86.47 96.87 52.43 67.65
ODIN* [25] 71.89 91.48 33.74 80.6
Mahalanobis* [24] 65.40 88.95 29.83 83.4
Energy [26] 87.50 96.84 60.90 52.85
ReAct [39] 63.7 90.36 22.31 92.25
ResFlow‡ [51] 53.38 12.01 90.59 94.53
FlowCon (Ours) 85.24 96.90 57.77 56.9

Table 3: Near-OOD Comparison of OOD detection performance during only covariate
shift. ∗ Uses OOD data to finetune the hyperparameters. † Uses OOD dataset for
training. ‡ Explicitly uses flow models.

Din Dood Method AUROC ↑ AUPR-S ↑ AUPR-E ↑ FPR-95 ↓(model)

CIFAR-100
(ResNet) CIFAR-10

MSP [14] 76.53 94.25 35.28 82.5
ODIN* [25] 60.46 88.79 20.91 93.01
Mahalanobis* [24] 42.54 81.21 13.53 98.6
Energy [26] 77.06 94.26 36.00 81.15
ReAct [39] 50.49 73.63 16.7 95.2
ResFlow‡ [51] 58.29 46.34 47.48 79.0
FlowCon (Ours) 82.80 95.79 48.79 67.6

CIFAR-100
(WideResNet) CIFAR-10

MSP [14] 72.85 93.46 31.54 85.75
ODIN* [25] 62.00 89.39 22.08 92.05
Mahalanobis* [24] 42.97 81.13 13.7 98.35
Energy [26] 74.30 93.46 32.94 83.6
ReAct [39] 49.08 82.9 16.33 95.01
ResFlow‡ [51] 59.22 18.08 92.34 90.81
FlowCon (Ours) 67.03 90.16 27.86 82.85

optimum performance. Moreover, the difference in performance between ResNet
and WideResNet for FlowCon is, in part, due to the feature dimensions on
which it operates on. Coupling-based flow architectures like RealNVP [8] and
Glow [20] have shown promising results on higher dimensional data as opposed
to low-dimensional features [35] (e.g., 128 for WideResNet).

5.3 Likelihood Plots

As we move across different OOD spectrums (Tables 1 - 3), we observe a gradual
decrease in performance. Since FlowCon is modelled on probability densities, it
allows us to effectively understand and visualize the impact of the OOD spectrum
by plotting the histogram of log-likelihood. Figs. 3a and 3b plot likelihood values
for CIFAR-10 and CIFAR-100 respectively. For each figure, the top row presents
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Fig. 3: Log-likelihood plots of trained FlowCon

the far-OOD context. For Fig. 3a, the bottom row presents the mixed-OOD
context where FlowCon trained on CIFAR-10 is evaluated on CIFAR-100 test
data as OOD. Conversely, in Fig. 3b the bottom presents near-OOD context
where FlowCon is trained on CIFAR-100 and evaluated on CIFAR-10 as OOD.

For both Figs. 3a and 3b, as we move from top to bottom row, it is apparent
that the overlap between likelihood plots increases. This is in agreement with the
performance reported in Section 5.2 as we observe a decline in metrics under more
challenging OOD contexts. However, it is crucial to highlight that even under
near-OOD conditions, the highest likelihood of falsely accepted OOD samples
never exceeds that of the highest accepted ID sample. This aspect of FlowCon
is pivotal to its robust performance since it addresses an important issue of flow
models described by Kirichenko et al . [22] where normalizing flow models assign
highest likelihood to OOD samples regardless of its training dataset.

5.4 Comparison with ResFlow
FlowCon addresses a critical constraint of ResFlow [51] models. Unlike ResFlows,
our training framework is independent of the number of layers of the classifier
or the number of classes in the ID dataset. Since ResFlow models all the of
intermediate features of the classifier, we evaluate the regressor scores assigned
on near-OOD context. Fig. 4 plots the histogram of the scores predicted by the
ResFlow model on CIFAR-100 as ID and CIFAR-10 as OOD dataset. Due to
a well calibrated regressor, the scores for the ID dataset have a low variance.
However, unlike the likelihood plots for FlowCon, ResFlows assigns the highest
likelihood for OOD samples and not the ID samples.

5.5 FlowCon as Classifier

Since we train FlowCon in a contrastive manner, we hypothesize that the emper-
ical class-wise distributions NX computed in Section 4.2 captures the discrimi-



Title Suppressed Due to Excessive Length 13

0.2 0.4 0.6 0.8

p(x)
0

10

20

30

40

50

60

D
e
n
s
it
y

ID
OOD

(a) Far-OOD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p(x)
0

10

20

30

40

50

60

D
e
n
s
it
y

ID
OOD

(b) Near-OOD
ResNet18

0.0 0.2 0.4 0.6 0.8

p(x)
0

5

10

15

20

D
e
n
s
it
y

ID
OOD

(c) Far-OOD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p(x)
0

5

10

15

20

D
e
n
s
it
y

ID
OOD

(d) Near-OOD
WideResNet

Fig. 4: Histogram plots on regressor scores of CIFAR-100 trained on ResFlow.

native information of the original classifier. To test this, we predict the class of
a given test sample, ztest using Bayes’ decision rule as

ytest = arg max
i∈{1,...,k}

pZ(ztest|Ny=i) (7)

Using this, we compute the image classification accuracy and compare it with the
original pretrained classifier on CIFAR-10 and CIFAR-100 using both ResNet18
and WideResNet. Table 4 reports the accuracy scores. We observe that difference
between FlowCon and the original classifier is negligible, therefore the assertion
that FlowCon is a class-preserving approach remains valid. Furthermore, the in
case of WideResNet, our approach marginally outperforms the original classi-
fier. This implies that a single branch suffices in both OOD detection and ID
classification.

Table 4: Class-preserving property of FlowCon. The classification accuracy of our
approach remains closely bounded to the original classifier.

Din Model Method Accuracy ↑

CIFAR-10 ResNet18 Orig 94.3
FlowCon 94.2

CIFAR-10 WideResNet Orig 93.3
FlowCon 93.8

CIFAR-100 ResNet18 Orig 75.8
FlowCon 74.9

CIFAR-100 WideResNet Orig 70.9
FlowCon 71.1

6 Discussion

Latent Space Visualization. Apart from visualizing the density plots, we
plot the low-dimensional UMAP embeddings [28] of the learned features zflow.
We show the plots for CIFAR-10 trained on both ResNet18 and WideResNet in
Fig. 5. The blue color represents the OOD data. For far-OOD, we use SVHN [32]
and for near-OOD, we use CIFAR-100. The UMAP embeddings exhibit a well-
clustered latent space that further supports the classification ability of FlowCon.
Moreover, for near-OOD contexts, we can observe the ID class clusters overlap
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with OOD data with similar semantics. This is analogous to overlapping of the
likelihood plots as shown in Fig. 3 (bottom rows).
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Fig. 5: UMAP embeddings of zflow trained on CIFAR-10 using FlowCon

Impact of λ Nalisnick et al . [31] first explored the role of λ in the context
of flow-based classification. The value λ = 1/d, where d is the dimension of
zflow was found to be most suitable for OOD detection. In case of FlowCon,
we found 0.07 to be the most suitable value optimizing both Lflow and Lcon.
We experiment with different λ values in the range of [0.05, 1] for WideResNet
trained on CIFAR-100 and report the results in Table 5. The table demonstrates
that an increasing λ value reduces the overall performance of FlowCon.

Table 5: Effect of λ in optimizing Lflow and Lcon under far-OOD context. Shaded
region reports λ values used in experiments.

Din λ AUROC ↑AUPR-S ↑AUPR-E ↑ FPR-95 ↓(model)

CIFAR-100
(WideResNet)

0.05 75.62 92.7 41.84 72.58
0.07 83.62 96.60 53.34 60.28
0.3 75.75 92.76 48.61 63.67
0.5 78.60 93.96 49.07 65.92
1.0 78.57 93.24 45.94 67.85

Limitations and Future Work. One of the constraints of normalizing flows
[33] is that the dimensions of input (zemb) and output (zflow) should be the
same. This potentially enforces the model to operate on low dimensional feature
vectors depending on the classifier network being used, as observed in experi-
ments pertaining to WideResNet. We emphasize that the reduced dimensionality
constrains the learning of FlowCon, which we will address in future work.

7 Conclusion
A new approach to OOD detection called FlowCon was proposed, which does not
use an external dataset as OOD or retrain the original classifier. The key intuition
of our approach is that the class-informed density estimator can recognize OOD
data simply by filtering out low density samples. The proposed approach operates
on deep features, instead of the raw input space, and therefore can be extended
to different domains. The best results were obtained on ResNet18 features on all
OOD contexts and exhibited competitive performance on WideResNet features.
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